Source code for whoosh.query.compound

# Copyright 2007 Matt Chaput. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
#    1. Redistributions of source code must retain the above copyright notice,
#       this list of conditions and the following disclaimer.
#
#    2. Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY MATT CHAPUT ``AS IS'' AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
# EVENT SHALL MATT CHAPUT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
# OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
# EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# The views and conclusions contained in the software and documentation are
# those of the authors and should not be interpreted as representing official
# policies, either expressed or implied, of Matt Chaput.


from whoosh import matching
from whoosh.query import qcore
from whoosh.util import make_binary_tree, make_weighted_tree


[docs]class CompoundQuery(qcore.Query): """Abstract base class for queries that combine or manipulate the results of multiple sub-queries . """ def __init__(self, subqueries, boost=1.0): for subq in subqueries: if not isinstance(subq, qcore.Query): raise qcore.QueryError(f"{subq!r} is not a query") self.subqueries = subqueries self.boost = boost def __repr__(self): r = f"{self.__class__.__name__}({self.subqueries!r}" if hasattr(self, "boost") and self.boost != 1: r += f", boost={self.boost}" r += ")" return r def __str__(self): r = "(" r += self.JOINT.join([str(s) for s in self.subqueries]) r += ")" return r def __eq__(self, other): return ( other and self.__class__ is other.__class__ and self.subqueries == other.subqueries and self.boost == other.boost ) def __getitem__(self, i): return self.subqueries.__getitem__(i) def __len__(self): return len(self.subqueries) def __iter__(self): return iter(self.subqueries) def __hash__(self): h = hash(self.__class__.__name__) ^ hash(self.boost) for q in self.subqueries: h ^= hash(q) return h def is_leaf(self): return False def children(self): return iter(self.subqueries) def apply(self, fn): return self.__class__([fn(q) for q in self.subqueries], boost=self.boost) def field(self): if self.subqueries: f = self.subqueries[0].field() if all(q.field() == f for q in self.subqueries[1:]): return f def estimate_size(self, ixreader): est = sum(q.estimate_size(ixreader) for q in self.subqueries) return min(est, ixreader.doc_count()) def estimate_min_size(self, ixreader): from whoosh.query import Not subs = self.subqueries qs = [ (q, q.estimate_min_size(ixreader)) for q in subs if not isinstance(q, Not) ] pos = [minsize for q, minsize in qs if minsize > 0] if pos: neg = [q.estimate_size(ixreader) for q in subs if isinstance(q, Not)] size = min(pos) - sum(neg) if size > 0: return size return 0 def normalize(self): from whoosh.query import Every, NumericRange, TermRange # Normalize subqueries and merge nested instances of this class subqueries = [] for s in self.subqueries: s = s.normalize() if isinstance(s, self.__class__): subqueries += [ss.with_boost(ss.boost * s.boost) for ss in s] else: subqueries.append(s) # If every subquery is Null, this query is Null if all(q is qcore.NullQuery for q in subqueries): return qcore.NullQuery # If there's an unfielded Every inside, then this query is Every if any((isinstance(q, Every) and q.fieldname is None) for q in subqueries): return Every() # Merge ranges and Everys everyfields = set() i = 0 while i < len(subqueries): q = subqueries[i] f = q.field() if f in everyfields: subqueries.pop(i) continue if isinstance(q, (TermRange, NumericRange)): j = i + 1 while j < len(subqueries): if q.overlaps(subqueries[j]): qq = subqueries.pop(j) q = q.merge(qq, intersect=self.intersect_merge) else: j += 1 q = subqueries[i] = q.normalize() if isinstance(q, Every): everyfields.add(q.fieldname) i += 1 # Eliminate duplicate queries subqs = [] seenqs = set() for s in subqueries: if not isinstance(s, Every) and s.field() in everyfields: continue if s in seenqs: continue seenqs.add(s) subqs.append(s) # Remove NullQuerys subqs = [q for q in subqs if q is not qcore.NullQuery] if not subqs: return qcore.NullQuery if len(subqs) == 1: sub = subqs[0] sub_boost = getattr(sub, "boost", 1.0) if not (self.boost == 1.0 and sub_boost == 1.0): sub = sub.with_boost(sub_boost * self.boost) return sub return self.__class__(subqs, boost=self.boost) def simplify(self, ixreader): subs = self.subqueries if subs: q = self.__class__( [subq.simplify(ixreader) for subq in subs], boost=self.boost ).normalize() else: q = qcore.NullQuery return q def matcher(self, searcher, context=None): # This method does a little sanity checking and then passes the info # down to the _matcher() method which subclasses must implement subs = self.subqueries if not subs: return matching.NullMatcher() if len(subs) == 1: m = subs[0].matcher(searcher, context) else: m = self._matcher(subs, searcher, context) return m def _matcher(self, subs, searcher, context): # Subclasses must implement this method raise NotImplementedError def _tree_matcher(self, subs, mcls, searcher, context, q_weight_fn, **kwargs): # q_weight_fn is a function which is called on each query and returns a # "weight" value which is used to build a huffman-like matcher tree. If # q_weight_fn is None, an order-preserving binary tree is used instead. # Create a matcher from the list of subqueries subms = [q.matcher(searcher, context) for q in subs] if len(subms) == 1: m = subms[0] elif q_weight_fn is None: m = make_binary_tree(mcls, subms, **kwargs) else: w_subms = [(q_weight_fn(q), m) for q, m in zip(subs, subms)] m = make_weighted_tree(mcls, w_subms, **kwargs) # If this query had a boost, add a wrapping matcher to apply the boost if self.boost != 1.0: m = matching.WrappingMatcher(m, self.boost) return m
[docs]class And(CompoundQuery): """Matches documents that match ALL of the subqueries. >>> And([Term("content", u"render"), ... Term("content", u"shade"), ... Not(Term("content", u"texture"))]) >>> # You can also do this >>> Term("content", u"render") & Term("content", u"shade") """ # This is used by the superclass's __str__ method. JOINT = " AND " intersect_merge = True def requires(self): s = set() for q in self.subqueries: s |= q.requires() return s def estimate_size(self, ixreader): return min(q.estimate_size(ixreader) for q in self.subqueries) def _matcher(self, subs, searcher, context): r = searcher.reader() q_weight_fn = lambda q: 0 - q.estimate_size(r) return self._tree_matcher( subs, matching.IntersectionMatcher, searcher, context, q_weight_fn )
[docs]class Or(CompoundQuery): """Matches documents that match ANY of the subqueries. >>> Or([Term("content", u"render"), ... And([Term("content", u"shade"), Term("content", u"texture")]), ... Not(Term("content", u"network"))]) >>> # You can also do this >>> Term("content", u"render") | Term("content", u"shade") """ # This is used by the superclass's __str__ method. JOINT = " OR " intersect_merge = False TOO_MANY_CLAUSES = 1024 # For debugging: set the array_type property to control matcher selection AUTO_MATCHER = 0 # Use automatic heuristics to choose matcher DEFAULT_MATCHER = 1 # Use a binary tree of UnionMatchers SPLIT_MATCHER = 2 # Use a different strategy for short and long queries ARRAY_MATCHER = 3 # Use a matcher that pre-loads docnums and scores matcher_type = AUTO_MATCHER def __init__(self, subqueries, boost=1.0, minmatch=0, scale=None): """ :param subqueries: a list of :class:`Query` objects to search for. :param boost: a boost factor to apply to the scores of all matching documents. :param minmatch: not yet implemented. :param scale: a scaling factor for a "coordination bonus". If this value is not None, it should be a floating point number greater than 0 and less than 1. The scores of the matching documents are boosted/penalized based on the number of query terms that matched in the document. This number scales the effect of the bonuses. """ CompoundQuery.__init__(self, subqueries, boost=boost) self.minmatch = minmatch self.scale = scale def __str__(self): r = "(" r += (self.JOINT).join([str(s) for s in self.subqueries]) r += ")" if self.minmatch: r += f">{self.minmatch}" return r def normalize(self): norm = CompoundQuery.normalize(self) if norm.__class__ is self.__class__: norm.minmatch = self.minmatch norm.scale = self.scale return norm def requires(self): if len(self.subqueries) == 1: return self.subqueries[0].requires() else: return set() def _matcher(self, subs, searcher, context): needs_current = context.needs_current if context else True weighting = context.weighting if context else None matcher_type = self.matcher_type if matcher_type == self.AUTO_MATCHER: dc = searcher.doc_count_all() if len(subs) < self.TOO_MANY_CLAUSES and ( needs_current or self.scale or len(subs) == 2 or dc > 5000 ): # If the parent matcher needs the current match, or there's just # two sub-matchers, use the standard binary tree of Unions matcher_type = self.DEFAULT_MATCHER else: # For small indexes, or too many clauses, just preload all # matches matcher_type = self.ARRAY_MATCHER if matcher_type == self.DEFAULT_MATCHER: # Implementation of Or that creates a binary tree of Union matchers cls = DefaultOr elif matcher_type == self.SPLIT_MATCHER: # Hybrid of pre-loading small queries and a binary tree of union # matchers for big queries cls = SplitOr elif matcher_type == self.ARRAY_MATCHER: # Implementation that pre-loads docnums and scores into an array cls = PreloadedOr else: raise ValueError(f"Unknown matcher_type {self.matcher_type!r}") return cls( subs, boost=self.boost, minmatch=self.minmatch, scale=self.scale ).matcher(searcher, context)
class DefaultOr(Or): JOINT = " dOR " def _matcher(self, subs, searcher, context): reader = searcher.reader() q_weight_fn = lambda q: q.estimate_size(reader) m = self._tree_matcher( subs, matching.UnionMatcher, searcher, context, q_weight_fn ) # If a scaling factor was given, wrap the matcher in a CoordMatcher to # alter scores based on term coordination if self.scale and any(m.term_matchers()): m = matching.CoordMatcher(m, scale=self.scale) return m class SplitOr(Or): JOINT = " sOr " SPLIT_DOC_LIMIT = 8000 def matcher(self, searcher, context=None): # Get the subqueries subs = self.subqueries if not subs: return matching.NullMatcher() elif len(subs) == 1: return subs[0].matcher(searcher, context) # Sort the subqueries into "small" and "big" queries based on their # estimated size. This works best for term queries. reader = searcher.reader() smallqs = [] bigqs = [] for q in subs: size = q.estimate_size(reader) if size <= self.SPLIT_DOC_LIMIT: smallqs.append(q) else: bigqs.append(q) # Build a pre-scored matcher for the small queries minscore = 0 smallmatcher = None if smallqs: smallmatcher = DefaultOr(smallqs).matcher(searcher, context) smallmatcher = matching.ArrayMatcher(smallmatcher, context.limit) minscore = smallmatcher.limit_quality() if bigqs: # Get a matcher for the big queries m = DefaultOr(bigqs).matcher(searcher, context) # Add the prescored matcher for the small queries if smallmatcher: m = matching.UnionMatcher(m, smallmatcher) # Set the minimum score based on the prescored matcher m.set_min_quality(minscore) elif smallmatcher: # If there are no big queries, just return the prescored matcher m = smallmatcher else: m = matching.NullMatcher() return m class PreloadedOr(Or): JOINT = " pOR " def _matcher(self, subs, searcher, context): if context: scored = context.weighting is not None else: scored = True ms = [sub.matcher(searcher, context) for sub in subs] doccount = searcher.doc_count_all() am = matching.ArrayUnionMatcher(ms, doccount, boost=self.boost, scored=scored) return am
[docs]class DisjunctionMax(CompoundQuery): """Matches all documents that match any of the subqueries, but scores each document using the maximum score from the subqueries. """ def __init__(self, subqueries, boost=1.0, tiebreak=0.0): CompoundQuery.__init__(self, subqueries, boost=boost) self.tiebreak = tiebreak def __str__(self): r = "DisMax(" r += " ".join(sorted(str(s) for s in self.subqueries)) r += ")" if self.tiebreak: r += "~" + str(self.tiebreak) return r def normalize(self): norm = CompoundQuery.normalize(self) if norm.__class__ is self.__class__: norm.tiebreak = self.tiebreak return norm def requires(self): if len(self.subqueries) == 1: return self.subqueries[0].requires() else: return set() def _matcher(self, subs, searcher, context): r = searcher.reader() q_weight_fn = lambda q: q.estimate_size(r) return self._tree_matcher( subs, matching.DisjunctionMaxMatcher, searcher, context, q_weight_fn, tiebreak=self.tiebreak, )
# Boolean queries class BinaryQuery(CompoundQuery): """Base class for binary queries (queries which are composed of two sub-queries). Subclasses should set the ``matcherclass`` attribute or override ``matcher()``, and may also need to override ``normalize()``, ``estimate_size()``, and/or ``estimate_min_size()``. """ boost = 1.0 def __init__(self, a, b): self.a = a self.b = b self.subqueries = (a, b) def __eq__(self, other): return ( other and self.__class__ is other.__class__ and self.a == other.a and self.b == other.b ) def __hash__(self): return hash(self.__class__.__name__) ^ hash(self.a) ^ hash(self.b) def needs_spans(self): return self.a.needs_spans() or self.b.needs_spans() def apply(self, fn): return self.__class__(fn(self.a), fn(self.b)) def field(self): f = self.a.field() if self.b.field() == f: return f def with_boost(self, boost): return self.__class__(self.a.with_boost(boost), self.b.with_boost(boost)) def normalize(self): a = self.a.normalize() b = self.b.normalize() if a is qcore.NullQuery and b is qcore.NullQuery: return qcore.NullQuery elif a is qcore.NullQuery: return b elif b is qcore.NullQuery: return a return self.__class__(a, b) def matcher(self, searcher, context=None): return self.matcherclass( self.a.matcher(searcher, context), self.b.matcher(searcher, context) )
[docs]class AndNot(BinaryQuery): """Binary boolean query of the form 'a ANDNOT b', where documents that match b are removed from the matches for a. """ JOINT = " ANDNOT " def with_boost(self, boost): return self.__class__(self.a.with_boost(boost), self.b) def normalize(self): a = self.a.normalize() b = self.b.normalize() if a is qcore.NullQuery: return qcore.NullQuery elif b is qcore.NullQuery: return a return self.__class__(a, b) def requires(self): return self.a.requires() def matcher(self, searcher, context=None): scoredm = self.a.matcher(searcher, context) notm = self.b.matcher(searcher, searcher.boolean_context()) return matching.AndNotMatcher(scoredm, notm)
[docs]class Otherwise(BinaryQuery): """A binary query that only matches the second clause if the first clause doesn't match any documents. """ JOINT = " OTHERWISE " def matcher(self, searcher, context=None): m = self.a.matcher(searcher, context) if not m.is_active(): m = self.b.matcher(searcher, context) return m
[docs]class Require(BinaryQuery): """Binary query returns results from the first query that also appear in the second query, but only uses the scores from the first query. This lets you filter results without affecting scores. """ JOINT = " REQUIRE " matcherclass = matching.RequireMatcher def requires(self): return self.a.requires() | self.b.requires() def estimate_size(self, ixreader): return self.b.estimate_size(ixreader) def estimate_min_size(self, ixreader): return self.b.estimate_min_size(ixreader) def with_boost(self, boost): return self.__class__(self.a.with_boost(boost), self.b) def normalize(self): a = self.a.normalize() b = self.b.normalize() if a is qcore.NullQuery or b is qcore.NullQuery: return qcore.NullQuery return self.__class__(a, b) def docs(self, searcher): return And(self.subqueries).docs(searcher) def matcher(self, searcher, context=None): scoredm = self.a.matcher(searcher, context) requiredm = self.b.matcher(searcher, searcher.boolean_context()) return matching.RequireMatcher(scoredm, requiredm)
[docs]class AndMaybe(BinaryQuery): """Binary query takes results from the first query. If and only if the same document also appears in the results from the second query, the score from the second query will be added to the score from the first query. """ JOINT = " ANDMAYBE " matcherclass = matching.AndMaybeMatcher def normalize(self): a = self.a.normalize() b = self.b.normalize() if a is qcore.NullQuery: return qcore.NullQuery if b is qcore.NullQuery: return a return self.__class__(a, b) def requires(self): return self.a.requires() def estimate_min_size(self, ixreader): return self.subqueries[0].estimate_min_size(ixreader) def docs(self, searcher): return self.subqueries[0].docs(searcher)
def BooleanQuery(required, should, prohibited): return AndNot(AndMaybe(And(required), Or(should)), Or(prohibited)).normalize()