Source code for whoosh.query.positional

# Copyright 2007 Matt Chaput. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
#    1. Redistributions of source code must retain the above copyright notice,
#       this list of conditions and the following disclaimer.
#
#    2. Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY MATT CHAPUT ``AS IS'' AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
# EVENT SHALL MATT CHAPUT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
# OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
# EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# The views and conclusions contained in the software and documentation are
# those of the authors and should not be interpreted as representing official
# policies, either expressed or implied, of Matt Chaput.


import copy

from whoosh import matching
from whoosh.analysis import Token
from whoosh.query import compound, qcore, terms


class Sequence(compound.CompoundQuery):
    """Matches documents containing a list of sub-queries in adjacent
    positions.

    This object has no sanity check to prevent you from using queries in
    different fields.
    """

    JOINT = " NEAR "
    intersect_merge = True

    def __init__(self, subqueries, slop=1, ordered=True, boost=1.0):
        """
        :param subqueries: a list of :class:`whoosh.query.Query` objects to
            match in sequence.
        :param slop: the maximum difference in position allowed between the
            subqueries.
        :param ordered: if True, the position differences between subqueries
            must be positive (that is, each subquery in the list must appear
            after the previous subquery in the document).
        :param boost: a boost factor to add to the score of documents matching
            this query.
        """

        compound.CompoundQuery.__init__(self, subqueries, boost=boost)
        self.slop = slop
        self.ordered = ordered

    def __eq__(self, other):
        return (
            other
            and type(self) is type(other)
            and self.subqueries == other.subqueries
            and self.boost == other.boost
        )

    def __repr__(self):
        return "%s(%r, slop=%d, boost=%f)" % (
            self.__class__.__name__,
            self.subqueries,
            self.slop,
            self.boost,
        )

    def __hash__(self):
        h = hash(self.slop) ^ hash(self.boost)
        for q in self.subqueries:
            h ^= hash(q)
        return h

    def normalize(self):
        # Because the subqueries are in sequence, we can't do the fancy merging
        # that CompoundQuery does
        return self.__class__(
            [q.normalize() for q in self.subqueries],
            self.slop,
            self.ordered,
            self.boost,
        )

    def _and_query(self):
        return compound.And(self.subqueries)

    def estimate_size(self, ixreader):
        return self._and_query().estimate_size(ixreader)

    def estimate_min_size(self, ixreader):
        return self._and_query().estimate_min_size(ixreader)

    def _matcher(self, subs, searcher, context):
        from whoosh.query.spans import SpanNear

        # Tell the sub-queries this matcher will need the current match to get
        # spans
        context = context.set(needs_current=True)
        m = self._tree_matcher(
            subs,
            SpanNear.SpanNearMatcher,
            searcher,
            context,
            None,
            slop=self.slop,
            ordered=self.ordered,
        )
        return m


class Ordered(Sequence):
    """Matches documents containing a list of sub-queries in the given order."""

    JOINT = " BEFORE "

    def _matcher(self, subs, searcher, context):
        from whoosh.query.spans import SpanBefore

        return self._tree_matcher(subs, SpanBefore._Matcher, searcher, context, None)


[docs]class Phrase(qcore.Query): """Matches documents containing a given phrase.""" def __init__(self, fieldname, words, slop=1, boost=1.0, char_ranges=None): """ :param fieldname: the field to search. :param words: a list of words (unicode strings) in the phrase. :param slop: the number of words allowed between each "word" in the phrase; the default of 1 means the phrase must match exactly. :param boost: a boost factor that to apply to the raw score of documents matched by this query. :param char_ranges: if a Phrase object is created by the query parser, it will set this attribute to a list of (startchar, endchar) pairs corresponding to the words in the phrase """ self.fieldname = fieldname self.words = words self.slop = slop self.boost = boost self.char_ranges = char_ranges def __eq__(self, other): return ( other and self.__class__ is other.__class__ and self.fieldname == other.fieldname and self.words == other.words and self.slop == other.slop and self.boost == other.boost ) def __repr__(self): return "{}({!r}, {!r}, slop={}, boost={:f})".format( self.__class__.__name__, self.fieldname, self.words, self.slop, self.boost, ) def __str__(self): return f"{self.fieldname}:\"{' '.join(self.words)}\"" def __hash__(self): h = hash(self.fieldname) ^ hash(self.slop) ^ hash(self.boost) for w in self.words: h ^= hash(w) return h def has_terms(self): return True def terms(self, phrases=False): if phrases and self.field(): for word in self.words: yield (self.field(), word) def tokens(self, boost=1.0): char_ranges = self.char_ranges startchar = endchar = None for i, word in enumerate(self.words): if char_ranges: startchar, endchar = char_ranges[i] yield Token( fieldname=self.fieldname, text=word, boost=boost * self.boost, startchar=startchar, endchar=endchar, chars=True, ) def normalize(self): if not self.words: return qcore.NullQuery if len(self.words) == 1: t = terms.Term(self.fieldname, self.words[0]) if self.char_ranges: t.startchar, t.endchar = self.char_ranges[0] return t words = [w for w in self.words if w is not None] return self.__class__( self.fieldname, words, slop=self.slop, boost=self.boost, char_ranges=self.char_ranges, ) def replace(self, fieldname, oldtext, newtext): q = copy.copy(self) if q.fieldname == fieldname: for i, word in enumerate(q.words): if word == oldtext: q.words[i] = newtext return q def _and_query(self): return compound.And([terms.Term(self.fieldname, word) for word in self.words]) def estimate_size(self, ixreader): return self._and_query().estimate_size(ixreader) def estimate_min_size(self, ixreader): return self._and_query().estimate_min_size(ixreader) def matcher(self, searcher, context=None): from whoosh.query import SpanNear2, Term fieldname = self.fieldname if fieldname not in searcher.schema: return matching.NullMatcher() field = searcher.schema[fieldname] if not field.format or not field.format.supports("positions"): raise qcore.QueryError( f"Phrase search: {self.fieldname!r} field has no positions" ) terms = [] # Build a list of Term queries from the words in the phrase reader = searcher.reader() for word in self.words: try: word = field.to_bytes(word) except ValueError: return matching.NullMatcher() if (fieldname, word) not in reader: # Shortcut the query if one of the words doesn't exist. return matching.NullMatcher() terms.append(Term(fieldname, word)) # Create the equivalent SpanNear2 query from the terms q = SpanNear2(terms, slop=self.slop, ordered=True, mindist=1) # Get the matcher m = q.matcher(searcher, context) if self.boost != 1.0: m = matching.WrappingMatcher(m, boost=self.boost) return m